the operational matrix of fractional integration for shifted legendre polynomials
Authors
abstract
in this article we implement an operational matrix of fractional integration for legendre polynomials. we proposed an algorithm to obtain an approximation solution for fractional differential equations, described in riemann-liouville sense, based on shifted legendre polynomials. this method was applied to solve linear multi-order fractional differential equation with initial conditions, and the exact solutions obtained for some illustrated examples. numerical results reveal that this method gives ideal approximation for linear multi-order fractional differential equations.
similar resources
New Operational Matrix For Shifted Legendre Polynomials and Fractional Differential Equations With Variable Coefficients
This paper is devoted to study a computation scheme to approximate solution of fractional differential equations(FDEs) and coupled system of FDEs with variable coefficients. We study some interesting properties of shifted Legendre polynomials and develop a new operational matrix. The new matrix is used along with some previously derived results to provide a theoretical treatment to approximate ...
full textQuartic and pantic B-spline operational matrix of fractional integration
In this work, we proposed an effective method based on cubic and pantic B-spline scaling functions to solve partial differential equations of fractional order. Our method is based on dual functions of B-spline scaling functions. We derived the operational matrix of fractional integration of cubic and pantic B-spline scaling functions and used them to transform the mentioned equations to a syste...
full textNumerical Solution of Space-time Fractional two-dimensional Telegraph Equation by Shifted Legendre Operational Matrices
Fractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They a...
full textquartic and pantic b-spline operational matrix of fractional integration
in this work, we proposed an efective method based on cubic and pantic b-spline scaling functions to solve partial differential equations of frac- tional order. our method is based on dual functions of b-spline scaling func- tions. we derived the operational matrix of fractional integration of cubic and pantic b-spline scaling functions and used them to transform the mentioned equations to a ...
full textNumerical Calculation of Fractional Derivatives for the Sinc Functions via Legendre Polynomials
This paper provides the fractional derivatives of the Caputo type for the sinc functions. It allows to use efficient numerical method for solving fractional differential equations. At first, some properties of the sinc functions and Legendre polynomials required for our subsequent development are given. Then we use the Legendre polynomials to approximate the fractional deri...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of science and technology (sciences)ISSN 1028-6276
volume 37
issue 4 2013
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023