the operational matrix of fractional integration for shifted legendre polynomials

Authors

g. h. erjaee

abstract

in this article we implement an operational matrix of fractional integration for legendre polynomials. we proposed an algorithm to obtain an approximation solution for fractional differential equations, described in riemann-liouville sense, based on shifted legendre polynomials. this method was applied to solve linear multi-order fractional differential equation with initial conditions, and the exact solutions obtained for some illustrated examples. numerical results reveal that this method gives ideal approximation for linear multi-order fractional differential equations.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

New Operational Matrix For Shifted Legendre Polynomials and Fractional Differential Equations With Variable Coefficients

This paper is devoted to study a computation scheme to approximate solution of fractional differential equations(FDEs) and coupled system of FDEs with variable coefficients. We study some interesting properties of shifted Legendre polynomials and develop a new operational matrix. The new matrix is used along with some previously derived results to provide a theoretical treatment to approximate ...

full text

Quartic and pantic B-spline operational matrix of fractional integration

In this work, we proposed an effective method based on cubic and pantic B-spline scaling functions to solve partial differential equations of fractional order. Our method is based on dual functions of B-spline scaling functions. We derived the operational matrix of fractional integration of cubic and pantic B-spline scaling functions and used them to transform the mentioned equations to a syste...

full text

Numerical Solution of Space-time Fractional two-dimensional Telegraph Equation by Shifted Legendre Operational Matrices

Fractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They a...

full text

quartic and pantic b-spline operational matrix of fractional integration

in this work, we proposed an ef ective method based on cubic and pantic b-spline scaling functions to solve partial di fferential equations of frac- tional order. our method is based on dual functions of b-spline scaling func- tions. we derived the operational matrix of fractional integration of cubic and pantic b-spline scaling functions and used them to transform the mentioned equations to a ...

full text

Numerical Calculation of Fractional Derivatives for the Sinc Functions via Legendre Polynomials

‎This paper provides the fractional derivatives of‎ ‎the Caputo type for the sinc functions‎. ‎It allows to use efficient‎ ‎numerical method for solving fractional differential equations‎. ‎At‎ ‎first‎, ‎some properties of the sinc functions and Legendre‎ ‎polynomials required for our subsequent development are given‎. ‎Then‎ ‎we use the Legendre polynomials to approximate the fractional‎ ‎deri...

full text

My Resources

Save resource for easier access later


Journal title:
iranian journal of science and technology (sciences)

ISSN 1028-6276

volume 37

issue 4 2013

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023